A master equation approach to option pricing
نویسنده
چکیده
A master equation approach to the numerical solution of option pricing models is developed. The basic idea of the approach is to consider the Black–Scholes equation as the macroscopic equation of an underlying mesoscopic stochastic option price variable. The dynamics of the latter is constructed and formulated in terms of a master equation. The numerical efficiency of the approach is demonstrated by means of stochastic simulation of the mesoscopic process for both European and American options.
منابع مشابه
Numerical Solutions for Fractional Black-Scholes Option Pricing Equation
In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.
متن کاملA new approach to using the cubic B-spline functions to solve the Black-Scholes equation
Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...
متن کاملEuropean option pricing of fractional Black-Scholes model with new Lagrange multipliers
In this paper, a new identification of the Lagrange multipliers by means of the Sumudu transform, is employed to btain a quick and accurate solution to the fractional Black-Scholes equation with the initial condition for a European option pricing problem. Undoubtedly this model is the most well known model for pricing financial derivatives. The fractional derivatives is described in Caputo sen...
متن کاملApplication of Monte Carlo Simulation in the Assessment of European Call Options
In this paper, the pricing of a European call option on the underlying asset is performed by using a Monte Carlo method, one of the powerful simulation methods, where the price development of the asset is simulated and value of the claim is computed in terms of an expected value. The proposed approach, applied in Monte Carlo simulation, is based on the Black-Scholes equation which generally def...
متن کاملOption Pricing in the Presence of Operational Risk
In this paper we distinguish between operational risks depending on whether the operational risk naturally arises in the context of model risk. As the pricing model exposes itself to operational errors whenever it updates and improves its investment model and other related parameters. In this case, it is no longer optimal to implement the best model. Generally, an option is exercised in a jump-...
متن کامل